Задачи о купюрах и поездах

Задача о купюрах:
• Существует 11 разных видов купюр. Все они разного номинала и цвета. Номиналы купюр – натуральные числа, выражаются в ед. Найдите стоимость каждой купюры, пользуясь нижеследующими высказываниями:
Задачи о купюрах и поездах
• Стоимость розовой купюры больше стоимости коричневой в два раза.

• Голубую купюру разменивают на три фиолетовых и одну белую.

• Сумма номиналов жёлтой и оранжевой купюр меньше номинала синей на сумму розовой и коричневой.

• Если к стоимости зелёной купюры добавить стоимость голубой, то это будет больше номинала красной купюры на 5ед.

• Жёлтая купюра самая удобная, и есть у каждого, потому что её стоимость делиться без остатка только на номиналы чёрной, розовой, оранжевой, коричневой и фиолетовой купюр.

• Номинал белой купюры, делённый на номинал фиолетовой, равен суммарной стоимости четырёх розовых купюр.

• Всего три купюры номиналом больше 600ед.
• Есть пять купюр, стоимость каждой больше номинала голубой, и столько же меньше голубой.

• Купюра номиналом 500ед есть у каждого.
• Номинал оранжевой купюры больше номинала чёрной во столько раз, во сколько номинал красной купюры больше номинала голубой.

• Голубую купюру можно разменять на четыре чёрных и одну фиолетовую.

• Если из номинала синей купюры вычесть стоимость розовой и коричневой купюр, то деление полученного на номинал оранжевой купюры, даст стоимость розовой и коричневой вместе.

• Синяя – единственная из всех купюр, номинал которой делится на три нацело.

• Две жёлтые купюры вам могут разменять на две розовые, одну зелёную и одну коричневую вместе.

• Нет купюр с номиналом 5ед, 20ед, 50ед, 100ед.
• Если у вас нет красной купюры, то отдайте две жёлтых и одну голубую, а на сдачи вам дадут одну фиолетовую купюру.

• Купюра с номиналом 753ед не самая дорогая.
• Частное от деления номинала фиолетовой купюры на номинал розовой, возведённое в квадрат, равно номиналу чёрной купюры.

• А теперь найдите стоимость каждой купюры. Для этого большинство высказываний надо превратить в алгебраические равенства и вывести стоимость купюр через другие купюры. Некоторые высказывания необходимо связать попарно и логически подумать. Удачи!

Задача о поездах:
2005 год. Из пункта «А» в пункт «С» через пункт «В» едут два поезда с одинаковыми скоростями. До первой остановки они ехали одинаковое время. Первый поезд проехал 5000км, а второй – столько же и ещё столько км, на сколько км/ч скорость первого поезда меньше скорости второго поезда, и остановился, а первый поезд проехал ещё трижды столько, сколько проехал второй поезд, и там был мост. Второй поезд проехал ещё дважды столько, сколько км от пункта «А» до моста и снова остановился. Расстояние, пройденное всеми поездами, было равно одной десятой от половины расстояния между пунктами «А» и «В». Первый поезд приехал в пункт «В» первого апреля и сразу направился в пункт «С», который находится на том же расстоянии от пункта «В», на котором пункт «А» находиться от стоячего второго поезда. Первый поезд приехал в пункт «С» через месяц. А какого числа стартовали оба поезда?

При надлежащем подходе, задача вполне решима. У поездов скорость равная и постоянная. Первый поезд ехал без остановок, а второй два раза останавливался. Поезда выехали одновременно.
Нажми «Нравится» и читай нас в Facebook!

По теме Задачи о купюрах и поездах

Решение задачи тысячелетия

Индийский математик Винэй Деолаликар (Vinay Deolalikar) представил...
Журнал

Важнейшие задачи астрономии

Важнейшими задачами астрономии в ближайшие 20 лет будут поиск внеземной жизни и...
Журнал

Кто мы. Наши задачи

Здравствуйте, друзья и враги! Мир вашему дому! Мир планете Земля и всей нашей...
Журнал

Задачи человечества

Вместо вступления хочу предложить вам для раздумий три картинки. Первая из них...
Журнал

Нерешаемые задачи в традициях Пифагоровой Школы

Сотни разных исследований в поисках числовых закономерностей было произведено...
Журнал

Цели и задачи вселенских процессов

Вначале самые общие представления. 1. В мире есть два вида энергии. Один вид...
Журнал

Опубликовать сон

Гадать онлайн

Пройти тесты

Популярное

Когда знания приблизительны
Чужое везение