Математические способности

Хотя математические способности и не были предметом специального рассмотрения в трудах Б.М.Теплова, однако ответы на многие вопросы, связанные с их изучением, можно найти в его работах, посвященных проблемам способностей.
Математические способности
Среди них особое место занимают две монографические работы - "Психология музыкальных способностей" и "Ум полководца", ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

В обеих работах Б.М.Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б.М.Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке - слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

Наиболее ярко роль общих способностей продемонстрирована в работе "Ум полководца". Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б.М.Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б.М.Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

Важное место в интеллектуальной деятельности полководца занимает память. Совсем не обязательно, чтобы она была универсальной. Гораздо важнее, чтобы она обладала избирательностью, то есть удерживала прежде всего необходимые, существенные детали. В качестве классического примера такой памяти Б.М.Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

Б.М.Теплов приходит к выводу, что "умение находить и выделять существенное и постоянная систематизация материала - вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца" (Б.М.Теплов 1985, стр.249). Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это прежде всего мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием "воля". Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

Особое место в интеллектуальной деятельности полководца Б.М.Теплов отводил наличию такого качества, как интуиция. Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б.М.Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае "озарению" должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

Подтверждения положениям, проанализированным и обобщенным Б.М.Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков. Так, в психологическом этюде "Математическое творчество" Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа, большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом "озарения" необходимо следовал второй этап - тщательной сознательной работы по приведению в порядок доказательства и его проверке. А.Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода - есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием и поэтому не способны понимать математику. Другие обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию и потому могут понимать и применять математику. Третьи владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия (Пуанкаре А., 1909).

Здесь речь идет о математическом творчестве, доступном немногим. Но, как писал Ж.Адамар, "между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера" (Адамар Ж., стр.98). Для того, чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном - что нет и не может быть единственной ярко выраженной математической способности - это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Советский психолог, исследовавший математические способности у школьников, В.А.Крутецкий дает следующее определение математическим способностям: "Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики" (Крутецкий В.А.,1968).

Исследование математических способностей включает в себя и решение одной из важнейших проблем - поиска природных предпосылок, или задатков, данного вида способностей. К задаткам относятся врожденные анатомо-физиологические особенности индивида, которые рассматриваются как благоприятные условия для развития способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б.М.Теплов и С.Л.Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В.С.Мерлин, 1986). Б.Г.Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами "талант" и "призвание" (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу (Э.А.Голубева 1993).

Основные принципы комплексного типологического подхода к изучению способностей и индивидуальности подробно изложены Э.А.Голубевой в соответствующей главе настоящей монографии. Одним из важнейших принципов является использование, наряду с качественным анализом, измерительных методов диагностики разных характеристик индивидуальности. Исходя из этого, мы строили экспериментальное исследование математических способностей. В нашу конкретную задачу входила диагностика свойств нервной системы, которые рассматривались в качестве задатков математических способностей, изучение личностных особенностей математически одаренных учащихся и особенностей их интеллекта. Эксперименты проводились на базе школы № 91 г. Москвы, в которой есть специализированные математические классы. В эти классы принимаются старшеклассники со всей Москвы, в основном победители районных и городских олимпиад, прошедшие дополнительное собеседование. Преподавание математики здесь ведется по более углубленной программе, дополнительно читается курс математического анализа. Исследование проводилось совместно с Е.П.Гусевой и учителем-экспериментатором В.М.Сапожниковым.

Все ученики, с которыми нам довелось работать в 8-10 классах, уже определились в своих интересах и склонностях. Дальнейшую свою учебу и работу они связывают с математикой. Их успешность по математике значительно превосходит успешность учеников нематематических классов. Но при общей высокой успешности внутри этой группы учащихся наблюдаются существенные индивидуальные различия. Исследование строилось таким образом. Мы наблюдали учащихся в процессе уроков, анализировали с помощью экспертов их контрольные работы, предлагали для решения экспериментальные задания, направленные на выявление некоторых компонентов математических способностей. Кроме того, с учащимися была проведена серия психологических и психофизиологических экспериментов. Изучались уровень развития и своеобразие интеллектуальных функций, выявлялись их личностные особенности и типологические особенности нервной системы. Всего на протяжении нескольких лет были обследованы 57 учеников с выраженными способностями к математике.

Результаты

Объективное измерение уровня интеллектуального развития при помощи теста Векслера у математически одаренных ребят показало, что большинство из них имеет очень высокий уровень общего интеллекта. Цифровые значения общего интеллекта многих учащихся, обследованных нами, превышали 130 баллов. Такой величины значения по некоторым нормативным классификациям обнаруживаются лишь у 2,2 населения. Следует также отметить, что в подавляющем большинстве случаев мы наблюдали преобладание вербального интеллекта над невербальным. Сам по себе факт наличия высокоразвитого общего и вербального интеллекта у детей с выраженными математическими способностями не является неожиданным. Многие исследователи математических способностей отмечали, что высокая степень развития словесно-логических функций является необходимым условием для математических способностей. Нас в данном случае интересовала не только количественная характеристика интеллекта, но и то, как она связана с психофизиологическими, природными особенностями учащихся. Индивидуальные особенности нервной системы диагностировались с помощью электроэнцефалографической методики. В качестве показателей свойств нервной системы были использованы фоновые и реактивные характеристики электроэнцефалограммы, запись которой производилась на 17-ти канальном энцефалографе. По этим показателям проводилась диагностика силы, лабильности и активированности нервной системы.

Мы установили, используя статистические методы анализа, что более высокий уровень вербального и общего интеллекта в этой выборке имели обладатели более сильной нервной системы. Они же имели и более высокие оценки успеваемости по предметам естественного и гуманитарного циклов. По данным других исследователей, полученным на подростках-старшеклассниках общеобразовательных школ, более высокий уровень интеллекта и лучшую успеваемость имели обладатели слабой нервной системы (Голубева Э.А. с соавт. 1974, Кадыров Б.Р. 1977). Причину такого расхождения следует, вероятно, искать прежде всего в характере самой учебной деятельности. Учащиеся математических классов испытывают значительно большие учебные нагрузки, по сравнению с учениками обычных классов. С ними проводятся дополнительные факультативы, кроме того, помимо обязательных домашних и классных заданий, они решают множество заданий, связанных с подготовкой в высшие учебные заведения. Интересы этих ребят смещены в сторону повышенной постоянной умственной нагрузки. Такие условия деятельности предъявляют повышенные требования к выносливости, работоспособности, а поскольку главным, определяющим признаком свойства силы нервной системы является способность выдерживать длительное возбуждение, не входя в состояние запредельного торможения, то видимо поэтому наибольшую результативность демонстрируют те учащиеся, которые обладают такими характеристиками нервной системы, как выносливость, работоспособность.

В.А.Крутецкий, изучая математическую деятельность способных к математике учеников, обращал внимание на их характерную особенность - способность к длительному поддержанию напряжения, когда ученик может долго и сосредоточенно заниматься, не обнаруживая усталости. Эти наблюдения позволили ему предположить, что такое свойство, как сила нервной системы, может являться одной из природных предпосылок, благоприятствующих развитию математических способностей. Полученные нами соотношения отчасти подтверждают это предположение. Почему лишь отчасти? Пониженная утомляемость в процессе занятий математикой отмечалась многими исследователями у способных к математике учеников по сравнению с неспособными к ней. Мы же обследовали выборку, которая состояла только из способных учащихся. Однако, среди них были не только обладатели сильной нервной системы, но и те, кто характеризовались как обладатели слабой нервной системы. Это означает, что не только высокая общая работоспособность, являющаяся благоприятной природной основой для успешности в данном виде деятельности, может обеспечивать развитие математических способностей.

Анализ личностных особенностей показал, что в целом для группы учащихся с более слабой нервной системы оказались более характерны такие черты личности как разумность, рассудительность, упорство (фактор J+), а также независимость, самостоятельность (фактор Q2+). Лица с высокими оценками по фактору J уделяют много внимания планированию поведения, анализируют свои ошибки, проявляя при этом "осторожный индивидуализм". Высокие оценки по фактору Q2 имеют люди, склонные к самостоятельному принятию решений, способные нести за них ответственность. Этот фактор обозначается как "мыслящая интроверсия". Вероятно, обладатели слабой нервной системы достигают успешности в данном виде деятельности в том числе за счет формирования таких качеств, как планирование действий, самостоятельность.

Можно также предположить, что разные полюса данного свойства нервной системы могут быть связаны с разными компонентами математических способностей. Так известно, что свойство слабости нервной системы характеризуется повышенной чувствительностью. Именно она может лежать в основе способности интуитивного, внезапного постижения истины, "озарения" или догадки, что является одним из важных компонентов математических способностей. И хотя это только предположение, но его подтверждение можно найти в конкретных примерах среди математически одаренных учеников. Приведем только два самых ярких таких примера. Дима на основании результатов объективной психофизиологической диагностики может быть отнесен к представителям сильного типа нервной системы. Он - "звезда первой величины" в математическом классе. Важно отметить то, что блестящих успехов он достигает без каких-либо видимых усилий, с легкостью. Никогда не жалуется на усталость. Уроки, занятия математикой являются для него необходимой постоянной умственной гимнастикой. Особое предпочтение отдается решению нестандартных, сложных задач, требующих напряжения мысли, глубокого анализа, строгой логический последовательности. Дима не допускает неточностей в изложении материала. Даже, если учитель при объяснении делает логические пропуски, Дима обязательно обратит на это внимание. Его отличает высокая интеллектуальная культура. Это подтверждается и результатами тестирования. У Димы самый высокий в обследованной группе показатель общего интеллекта - 149 усл.ед.

Антон - один из самых ярких представителей слабого типа нервной системы, которого нам довелось наблюдать среди математически одаренных ребят. Он очень быстро утомляется на уроке, не в состоянии долго и сосредоточенно работать, часто оставляет одни дела, чтобы без достаточного обдумывания взяться за другие. Случается, что он отказывается от решения задачи, если предвидит, что оно потребует больших усилий. Однако, несмотря на эти особенности, учителя очень высоко оценивают его математические способности. Дело в том, что он обладает прекрасной математической интуицией. Часто бывает, что он первым решает сложнейшие задания, выдавая конечный результат и опуская при этом все промежуточные этапы решения. Для него характерна способность к "озарению". Он не затрудняет себя объяснением, почему выбрано именно такое решение, но на проверку оно оказывается оптимальным и оригинальным.

Математические способности очень сложны и многогранны по своей структуре. И тем не менее выделяются как бы два основных типа людей с их проявлением - это "геометры" и "аналитики". В истории математики яркими примерами этого могут являться такие имена, как Пифагор и Евклид (крупнейшие геометры), Ковалевская и Клейн (аналитики, создатели теории функций). В основе такого деления лежат прежде всего индивидуальные особенности восприятия действительности, в том числе и математического материала. Оно определяется не предметом, над которым работает математик: аналитики и в геометрии остаются аналитиками, тогда как геометры любую математическую реальность предпочитают воспринимать образно. В этой связи уместно привести высказывание А.Пуанкаре: "Отнюдь не обсуждаемый ими вопрос заставляет их использовать тот или другой метод. Если часто об одних говорят что они аналитики, а других называют геометрами, то это не мешает тому, что первые остаются аналитиками, даже когда занимаются вопросами геометрии, в то время как другие являются геометрами, даже если занимаются чистым анализом." (цит. по Ж.Адамару, стр.102).

В школьной практике при работе с одаренными учащимися эти различия проявляются не только в разной успешности овладения разными разделами математики, но и в предпочтительном отношении к принципам решения задач. Одни ученики любые задачи стремятся решить с помощью формул, логического рассуждения, другие по возможности используют пространственные представления. Причем эти различия являются весьма устойчивыми. Конечно, среди учеников встречаются и такие, у которых наблюдается определенное равновесие этих характеристик. Они одинаково ровно овладевают всеми разделами математики, используя при этом разные принципы подхода к решению разных задач. Индивидуальные различия между учащимися в подходах к решению задач и методах их решения были нами выявлены не только благодаря наблюдению за учащимися при работе на уроках, но и экспериментальным путем. Для анализа отдельных компонентов математических способностей учителем-экспериментатором В.М.Сапожниковым была разработана серия специальных экспериментальных задач. Анализ результатов решения задач этой серии позволил получить объективное представление о характере мыслительной деятельности школьников и о соотношении образного и аналитического компонентов математического мышления.

Были выявлены учащиеся, которые лучше справлялись с решением алгебраических задач, а также те, кто лучше решал геометрические задачи. Эксперимент показал, что среди учащихся есть представители аналитического типа математического мышления, которые характеризуются явным преобладанием вербально-логического компонента. У них нет потребности в наглядных схемах, они предпочитают оперировать знаковыми символами. Мышление учащихся, оказывающих предпочтение геометрическим заданиям, характеризуются большей выраженностью наглядно-образного компонента. Эти учащиеся испытывают потребность в наглядном представлении и интерпретации в выражении математических отношений и зависимостей.

Из общего числа математически одаренных учеников, принявших участие в экспериментах, были выделены самые яркие "аналитики" и "геометры", составившие две крайние группы. В группу "аналитиков" вошли 11 человек, наиболее ярких представителей вербально-логического типа мышления. Группа "геометров" состояла из 5 человек, с ярким наглядно-образным типом мышления. Тот факт, что в группу ярких представителей "геометров" удалось отобрать значительно меньше учеников, можно объяснить, на наш взгляд, следующим обстоятельством. При проведении математических конкурсов и олимпиад недостаточно учитывается роль наглядно-образных компонентов мышления. В конкурсных заданиях удельный вес задач по геометрии невысок - из 4-5 заданий в лучшем случае одно направлено на выявление пространственных представлений у учащихся. Тем самым при отборе как бы "отсекаются" потенциально способные математики-геометры с ярким наглядно-образным типом мышления. Дальнейший анализ проводился с использованием статистического метода сравнения групповых различий (t-критерий Стьюдента) по всем, имевшимся в нашем распоряжении психофизиологическим и психологическим показателям.

Известно, что типологическая концепция И.П.Павлова помимо физиологической теории свойств нервной системы включала в себя классификацию специально человеческих типов высшей нервной деятельности, различающихся по соотношению сигнальных систем. Это - "художники", с преобладанием первой сигнальной системы, "мыслители", с преобладанием второй сигнальной системы, и средний тип, с равновесием обеих систем. Для "мыслителей" наиболее характерным является абстрактно-логический способ переработки информации, тогда как "художники" обладают ярким образным целостным восприятием действительности. Безусловно, эти различия не носят абсолютный характер, а отражают лишь преимущественные формы реагирования. Те же принципы лежат в основе различий между "аналитиками" и "геометрами". Первые предпочитают аналитические способы решения любых математических задач, то есть по типу приближаются к "мыслителям". "Геометры" стремятся вычленить в задачах образные компоненты, тем самым действуют так, как характерно для "художников".

В последнее время появился ряд работ, в которых предпринимались попытки объединить учение об основных свойствах нервной системы с представлениями о специально человеческих типах - "художниках" и "мыслителях". Установлено, что к "художественному" типу тяготеют обладатели сильной, лабильной и активированной нервной системы, а к "мыслительному" - слабой, инертной и инактивированной нервной системы (Печенков В.В., 1989). В нашей работе из показателей различных свойств нервной системы, наиболее информативной психофизиологической характеристикой при диагностике типов математического мышления оказалась характеристика свойства силы-слабости нервной системы. В группу "аналитиков" вошли обладатели относительно более слабой нервной системы, по сравнению с группой "геометров". То есть, выявленные нами различия между группами по свойству силы-слабости нервной системы оказались в русле ранее полученных результатов. По двум другим свойствам нервной системы (лабильности, активированности) статистически значимых различий установлено нами не было, при том что наметившиеся тенденции не противоречат исходным предположениям.

Проведен также сравнительный анализ результатов диагностики личностных особенностей, полученных с помощью вопросника Кэттелла. Статистически значимые различия между группами были установлены по двум факторам - Н и J. По фактору Н группу "аналитиков" можно в целом характеризовать как относительно более сдержанную, с ограниченным кругом интересов (Н-). Обычно люди с низкими показателями по этому фактору замкнуты, не стремятся к дополнительным контактам с людьми. Группа "геометров" имеет по этому личностному фактору большие величины (Н+) и отличается по нему определенной беззаботностью, общительностью. Такие люди не испытывают трудностей в общении, много и охотно идут на контакты, не теряются в неожиданных обстоятельствах. Они артистичны, способны выдерживать значительные эмоциональные нагрузки. По фактору J, который в целом характеризует такую черту личности, как индивидуализм, группа "аналитиков" имеет высокие среднегрупповые значения. Это означает, что им свойственны разумность, рассудительность, упорство. Люди, имеющие высокий вес по этому фактору, уделяют много внимания планированию своего поведения, при этом оставаясь замкнутыми и действуя индивидуально.

В противовес им, ребята, входящие в группу "геометров", энергичны, экспрессивны. Они любят совместные действия, готовы включиться в групповые интересы и проявить при этом свою активность. Наметившиеся различия показывают, что исследуемые группы математически одаренных учащихся наиболее расходятся по двум факторам, которые, с одной стороны, характеризуют определенную эмоциональную направленность (сдержанность, рассудительность - беззаботность, экспрессивность), с другой, особенности в межличностных отношениях (замкнутость - общительность). Интересно, что описание этих черт в значительной степени совпадает с описанием типов экстравертов-интровертов, предложенных Айзенком. В свою очередь, эти типы имеют определенную психофизиологическую интерпретацию. Экстраверты - это сильные, лабильные, активированные, интроверты - слабые, инертные, инактивированные. Тот же набор психофизиологических характеристик получен для специально человеческих типов высшей нервной деятельности - "художников" и "мыслителей".

Наши результаты позволяют выстроить определенные синдромы взаимосвязи психофизиологических, психологических признаков и типов математического мышления.

"аналитики" "геометры" (абстрактно-логический тип мышления) (наглядно-образный тип мышления)

слабая н.с. сильная н.с.
рассудительность беззаботность
замкнутость общительность
интроверты экстраверты

Таким образом, проведенное нами комплексное исследование математически одаренных школьников позволило экспериментально подтвердить наличие определенного сочетания психологических и психофизиологических факторов, составляющих благоприятную основу для развития математических способностей. Это касается как общих, так и специальных моментов в проявлении данного вида способностей.
Нажми «Нравится» и читай нас в Facebook!

По теме Математические способности

Музыкальные способности

Музыкальная подпитка. Давайте предположим, что мы наблюдаем, как «нарастает...
Психология

Способности детей

Никто из Вас, дорогие читатели, конечно же, не станет отрицать очевидную истину...
Психология

Способности и одаренность

При установлении основных понятий учения об одаренности наиболее удобно исходить...
Психология

Врожденные способности детей

Практически всех интересует этот вопрос. Родители думают, что дети обязательно...
Психология

Задатки и способности

Способности - свойства и качества (индивидуальные особенности) человека...
Психология

Умственные способности у детей

Часто утверждают, что характер ребенка и умственные способности формируются уже...
Психология

Опубликовать сон

Гадать онлайн

Пройти тесты

Популярное

Сегодня. Выбор с уровня Души
Как активировать руны для привлечения денег и удачи